Skip to Content
Smilingwolf wd vit tagger v3. Trained using https://github.
![]()
Smilingwolf wd vit tagger v3 Use this model This is a fork version from https://huggingface. 453 followers · 3 following WD ViT-Large Tagger v3 Supports ratings, characters and general tags. WD ViT-Large Tagger v3 Supports ratings, characters and general tags. License: apache-2. It was trained using the JAX-CV framework, with TPU training provided by the TRC program. The wd-eva02-large-tagger-v3 model takes image data as input and outputs a set of predicted tags, including ratings, characters, and general tags. Used tag frequency-based loss scaling to combat class imbalance. Safetensors. Model inputs and outputs. Model v1. Developed by SmilingWolf, this model represents a significant improvement over its predecessors, achieving an F1 score of 0. onnx和selected_tags. No change to the trained weights. This batch tagger support wd-vit-tagger-v3 model by SmilingWolf which is more updated model than legacy WD14. 1/Dataset v3: Amended the JAX model config file: add image size. 0/Dataset v3: Trained for a few more epochs. Sep 26, 2024 · wd-vit-tagger-v3 是下载量最多的模型,表明其在多个任务中表现稳定,适合一般用途。 如果您追求平衡的性能与计算成本,可以考虑 wd-v1-4-swinv2-tagger-v2 或 wd-v1-4-moat-tagger-v2,这两个模型都在性能和效率之间找到了较好的平衡点。 WD ViT Tagger v3 is an advanced Vision Transformer model designed for multi-label image classification, specifically optimized for anime and manga artwork tagging. Model card Files Files and versions Community 2 Use this model Oct 13, 2024 · 报错如下 第一步下载模型: 这里要用到SmilingWolf/wd-v1-4-convnextv2-tagger-v2模型. txt with identical filename as the source image. 0版本通过类不平衡损失缩放技术改进了模型精度;v1. like 65. Model card Files Files and versions Community 2. TPUs used for training kindly provided by the WD ViT Tagger v3是一个针对 Danbooru 图像数据集的开源项目,支持图像评分、角色和标签的处理。v2. Tested on CUDA and Windows. co/SmilingWolf/wd-vit-tagger-v3/ unroll1989's profile picture odyss3y's profile picture DeepRED's profile picture. 4402 at a threshold of 0. Now timm compatible! Load it The noticeable improvements from the WDv3 vs 1. Trained using https://github. ONNX. Model v2. The successor of WD14 tagger. 2614. 1 修订 JAX 模型配置,增加图像尺寸定义;v1. 4 is not. 下载 model. This script is to mass captioning the image on one directory. TPUs used for training kindly provided by WD SwinV2 Tagger v3 Supports ratings, characters and general tags. TPUs used for training kindly provided by Saved searches Use saved searches to filter your results more quickly Nov 27, 2024 · This model is part of a series of Waifu Diffusion (WD) taggers, which also include the wd-vit-large-tagger-v3, wd-swinv2-tagger-v3, and wd-vit-tagger-v3 models. Aug 7, 2024 · The wd-vit-tagger-v3 is an AI model developed by SmilingWolf that supports ratings, characters, and general tags. The model builds upon previous versions, with improvements such as more training data, updated tags, and ONNX compatibility. 0 增加训练图像和更新标签,兼容 timm 和 ONNX,对批处理大小没有固定要求,并使用 Macro-F1 衡量模型性能。 此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。 如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。 Jul 28, 2024 · この記事の対象について ・AUTOMATIC1111(あるいはforge)のエクステンションを導入方法を知っている人 ・LoRA作りにおいて画像のタグ付けをしたことがある人 ・正式じゃない方法でも新しいタグ付けモデルを使ってみたいという人 wd-vit-large-tagger-v3について つい先日(2024年7月27日)の事ですがwd Aug 22, 2024 · こんにちは!【でんでん】です! 以前にtaggerの新モデルの追加方法について記事を書きましたが、あれからしばらく経ち、新しいモデルをSmilingWolfアニキがリリースしていたので導入方法を解説してきます。 永久保存版にしたいので、これから新しいモデルがリリースされても対応出来るよう SmilingWolf / wd-vit-tagger-v3. csv这两个文件; WD EVA02-Large Tagger v3 Supports ratings, characters and general tags. 4 is the datasets trained on is newer (Which has cut off date around February 2024), so v3 model could recognize broader character name than the predecessor. The model . timm. 0/Dataset v3: More training images, more and up-to-date tags (up to 2024-02-28). Using original WD tagger HF space for the experiment, the WDv3 could detect the character name, while WD 1. TPUs used for training kindly provided by SmilingWolf / wd-vit-tagger-v3. 0. The captioned image file output is . com/SmilingWolf/JAX-CV. like 61. odkkq qqb dgyfrf nqjtm hxxbwy aphl rxyt omnlj bsvewcgx rauzsrhql