Skip to Content
Wd swinv2 tagger v3.
The successor of WD14 tagger.
![]()
Wd swinv2 tagger v3 v2,wd-v1-4-vit-tagger. Sep 6, 2024 · The wd-swinv2-tagger-v3 is an AI model developed by SmilingWolf that supports ratings, characters and general tags. Used tag frequency-based loss scaling to combat class imbalance. You can inspect the repository content at https://hf. Model card Files Files and versions Community 6. With improved functionalities and the latest updates, this tool can help you achieve effective image tagging with minimal effort. This batch tagger support wd-vit-tagger-v3 model by SmilingWolf which is more updated model than legacy WD14. Built using the SwinV2 architecture, this model represents a significant advancement in automated content tagging, trained on an extensive Danbooru dataset up to image ID 7220105. co/SmilingWolf/wd-swinv2-tagger-v3 此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。 如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。 WD SwinV2 Tagger v3 with 🤗 transformers Converted from SmilingWolf/wd-swinv2-tagger-v3 to transformers library format. 0. Amended the JAX model config file: add image size. 453 followers · 3 following Jul 28, 2024 · この記事の対象について ・AUTOMATIC1111(あるいはforge)のエクステンションを導入方法を知っている人 ・LoRA作りにおいて画像のタグ付けをしたことがある人 ・正式じゃない方法でも新しいタグ付けモデルを使ってみたいという人 wd-vit-large-tagger-v3について つい先日(2024年7月27日)の事ですがwd Mar 6, 2024 · wd-swinv2-tagger-v3. This is a fork version from https://huggingface. Models such as `moondream` are used to describe the main information of the image, and the `wd-swinv2-tagger-v3` model is used to increase the accuracy of character description. More training images, more and up-to-date tags (up to 2024-02-28). co/SmilingWolf/wd-swinv2-tagger-v3 model: 要使用的tagger模型,这里推荐使用wd-swinv2-tagger-v3模型,显著提升了人物特征的描述准确度,特别适用于需要细腻描绘人物的场景。(下面图中的示例我是采用了他们官方的推荐,效果不如wd-swinv2-tagger-v3模型好) threshold: 标签被认为有效的分数 WD ViT Tagger v3是一个针对 Danbooru 图像数据集的开源项目,支持图像评分、角色和标签的处理。v2. No change to the trained weights. dec-5-97527,mld-tresnetd. v1,wd14-vit. . co/p1atdev/wd-swinv2-tagger-v3-hf. 0 增加训练图像和更新标签,兼容 timm 和 ONNX,对批处理大小没有固定要求,并使用 Macro-F1 衡量模型性能。. You can avoid this prompt in future by passing the argument `trust_remote_code=True`. like 45. v2,wd14-convnext. ONNX. 1 修订 JAX 模型配置,增加图像尺寸定义;v1. v1,wd14-convnext. 6 wd-swinv2-tagger-v3. Mar 18, 2024 · Welcome to the comprehensive guide about the WD SwinV2 Tagger v3! This library is specifically designed to support ratings, characters, and general tags for images. It is trained on Danbooru images using the JAX-CV framework and TPUs provided by the TRC program. timm. WD SwinV2 Tagger v3 is a sophisticated image tagging model specifically designed for anime and manga content analysis. Now timm compatible! Load it up and give it a spin using the canonical one-liner! We adopted the wd-swinv2-tagger-v3 model, which significantly enhanced the accuracy of character trait descriptions, making it particularly suitable for scenarios requiring detailed depiction of characters. v3,wd-v1-4-swinv2-tagger. v3,wd-v1-4-convnext-tagger. like 70. Safetensors. Use this model main wd-swinv2-tagger-v3 The successor of WD14 tagger. Use this model main wd-swinv2-tagger-v3. Used `hahahafofo/Qwen-1_8B-Stable-Diffusion-Prompt` to make full use of Qwen's capabilities and support multiple forms of prompt generation including ancient poetry. 0版本通过类不平衡损失缩放技术改进了模型精度;v1. v3,mld-caformer. v1,wd14-swinv2-v1,wd-v1-4-moat-tagger. Model card Files Files and versions Community 3 Use this model main wd-swinv2-tagger-v3 Aug 22, 2024 · こんにちは!【でんでん】です! 以前にtaggerの新モデルの追加方法について記事を書きましたが、あれからしばらく経ち、新しいモデルをSmilingWolfアニキがリリースしていたので導入方法を解説してきます。 永久保存版にしたいので、これから新しいモデルがリリースされても対応出来るよう usage: run. Example Installation pip install unroll1989's profile picture odyss3y's profile picture DeepRED's profile picture. py [-h] (--dir DIR | --file FILE) [--threshold THRESHOLD] [--ext EXT] [--overwrite] [--cpu] [--rawtag] [--recursive] [--exclude-tag t1,t2,t3] [--model {wd14-vit. License: apache-2. Tested on CUDA and Windows. v2,wd14-convnextv2. fnyaw clfsry wfoyiz rwp gkvhl eypezymv gjmwfbjg hzjm wez nmygwt